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Here we report using photoacoustic calorimetry (PAC) to
measure the reaction enthalpy and volume for dissociation of
hydrogen peroxide, eq 1, ultimately obtaining the enthalpy of
formation, A{H°, and partial molal volumey®, of OH(aq). This,
we believe, is the first report of° OH in solution.

H,0,(aq)~ 20H(aq) (1)
Usingv®, we estimate the hydration free energy of OH by novel
application of continuum theory to obtaigG°® OH(aq). The results
are in excellent agreement with values derived from other experi-
mental approachésind with recent theoretical predictioh$hese
results open the way to obtaining thermochemistry for radicals

formed by reaction of OH with aqueous substrates. Such data will
provide relevant benchmarks for developing theoretical methods.

Figure 1. Temperature°C) dependence of normalized PAC signal from
dissociation of HO, with 266-nm pulsed light and fit to eq 2; OH in a

cavity with shape defined by OHwater interactions. Points around waters
are the 0.08 gal? isocontour of an isolated water molecule.

The photoacoustic calorimetry (PAC) technique is based on the eq 2 from whichAH; = 46.8+ 1.4 kcal/mol andA,V; = 6.5 +
phenomenon that chemical reactions induced by absorption of a0.4 mL/mol. Given thatAH° H.Ox(aq) and A{H® OH(g) are
light pulse produce a measurable pressure pulse that is related tnown?2 our measurements providgH® OH(ag)= —0.2 + 1.4

the enthalpy, reaction volume, and rate of the induced reattion.
Often used to obtain €H bond dissociation enthalpies in non-
aqueous medi&? the use of time-resolved PAC for aqueous bond
dissociation energie®H°) is relatively unexplore®-¢ The number

of radicals for which there are aqueous thermochemical data is small
by comparison to the gas-phase database, and even smaller forArvl_ It equates to: & OH — v° H

radical ions. This situation hinders mechanism elucidation and

kcal/mol andAH® = —9.1 £+ 1.5 kcal/mol for hydration of OH.
The former corresponds to the<®@ bond being 25 kcal/mol
weaker in water than in the gas phase, while the latter is comparable
to the hydration enthalpy—10.5 kcal/mol) of watet?

Before discussing further the effects of hydration, we interpret
20, wherev® is the partial
molal volume. Givernv® H,O, = 22.2 mL/moli° thenv® OH =

development of methods for predicting agueous-phase radical 14.4+ 0.4 mL/mol. The volume is smaller thafi for water (18.0

reactions. Advances in PAC techniques, together with improved

understanding of how to derive aqueous reaction enthalpy through

analysis of the temperature dependence of time-resolved photo

acoustic signals, make PAC patrticularly suitable for measurements

of aqueous solutions:’

We measured signals for photodissociation gDkifrom 10 to
45°C using light from a 266-nm pulsed laser. Equation 2 describes
the dependence of the normalized signral,

Arvl)
Xs
on reaction volume,A,V;, and reaction enthalpyAH;, for
photodissociation of bD,, where® is the primary quantum yield
for bond scissionE; is the molar energy of the excitation light
with wavelengthl, and ys is the temperature-dependent solvent
quality factor® Literature valuelfor the quantum yield of HO

OH bond scission were used to define the dependenck oh
temperature (see Supporting Information). Typically, we used 30
mM concentrations of kD,, for which the solution properties of
water adequately descrihg® Even with this low concentration,
the follow-up reaction of OH with kD, still contributes a small,
but observable componenp,, to the PAC signal. This second
component was resolved from the raw PAC signal by deconvolution
of the photoacoustic waveformsFigure 1 shows our data fit to

9(_A,H1+

¢1:1+E/1

)
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mL/mol). This is a unique result, as few neutral solutes heve
that even approach that of wafére.g.,v° H, is 26.7 mL/molt3a

The v° of a solute may not be a direct measure of the cavity it
occupies in solution, because the volume increase on addition of
solute may be partially offset by a change in density of water
surrounding the solute. However, in this case, Cabral do Couto et
al.2 compared simulations of OH-in-water and water-in-water and
found the density of water surrounding OH is the same as that for
water in water.

Knowing the volume that OH occupies in solution, we used
theory to predict the hydration free energy of OH: specifically,
the scaled particle thedryand interaction potentidi® for the
cavity/dispersion/repulsion contribution to the free energy of
solvation and an approximati&aof the surface volume polarization
for electrostatics formulatidf® of continuum solvatiol (see
Supporting Information for description of the methods). A key tenet
of our modeling is that solute cavities used in these theories should
reflect the specific (hydrogen bond) soldtsolvent interactions
more faithfully than do the various standard empirical protocols
for defining molecular-shaped caviti€sThus, we devised a novel
ab initio cavity definition that captures the strength and specific
interactions of the solute with a water solvent molecule. It involves
“rolling a water molecule” over the solute molecule to define the
trough of minimum energy in the solutgvater interaction. A three-
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